Smooth Generation of 3H-2-Benzopyran-3-ones and their Diels-Alder Reactions with Olefinic Dienophiles

Peter I. Van Broeck, Dirk J. Vanderzande, Eric G. Kiekens and Georges J. Hoornaert * Department of Chemistry, K. U. Leuven, Celestijnenlaan 200 F, B-3001 Leuven, Belgium

Abstract

The generation of methoxy-substituted 3 H -2-benzopyran-3-ones from o-acylphenylacetic acid derivatives in acetic anhydride at $140^{\circ} \mathrm{C}$ and their in situ Diels-Alder reactions being inefficient in the synthesis of some carbocyclic compounds, alternative reagents have been used. It is shown that, e.g. 1,3-dicyclohexylcarbodiimide (DCC) with 2-hydroxypyridine, disuccinimidyl carbonate (DSC), 2-ethoxy- N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) of 2-isobutoxy- N-isobutoxycarbonyl-1,2-dihydroquinoline (IIDQ) are much more efficient reagents.

Using these alternative reagents the formation of side-products from the benzopyranone, e.g. chrysene, can be avoided; with the modified DCC-method the 6,7-dimethoxy-1-methyl-2-benzopyran3 -one intermediate 8 a can be identified spectroscopically. An exemplified procedure with IIDQ is proposed, opening new prespectives for Diels-Alder reactions of unstable or less reactive dienophiles with problematic benzopyranones.

In recent years ortho-quinodimethane systems have proved to be very useful in intramolecular ${ }^{1}$ as well as in intermolecular ${ }^{2}$ Diels--Alder reactions with various dienophiles. ortho-Quinodimethane systems of type 2 can be generated by thermolysis of benzocyclobutenes 1 and can be brought into reaction with, e.g., olefinic dienophiles 3 (Scheme 1). ${ }^{3}$

With methoxy-substituted benzopyranones, decomposition and loss of CO_{2} from the adducts was observed. Furthermore, in the reaction of methoxy-substituted o-acetylphenylacetic acid 7a with poorly reactive dienophiles we isolated a high yield of the chrysene 13a. Based on the observation ${ }^{10}$ that compound $7 \mathbf{e}$ also gave a considerable yield of the corresponding chrysene

In an alternative approach, ortho-quinodimethane systems of type 6 can be obtained by extrusion of X from adducts 5 , prepared via a Diels-Alder reaction of compounds 4 with dienophiles 3. According to literature data, X can be $\mathrm{CO},{ }^{4}$ $-\mathrm{N}=\mathrm{N}-,{ }^{5} \mathrm{~S},{ }^{6} \mathrm{O},{ }^{7}, \mathrm{NH}^{8}$ and $-\mathrm{CO} \cdot \mathrm{O}-{ }^{9}$ The latter lactone precursor type has been used mainly by Jones and co-workers. ${ }^{9}$ By heating o-acylphenylacetic acid derivatives 7 in acetic anhydride they generated 3H-2-benzopyran-3-ones 8 in situ (Scheme 2). During our work on some benzopyranones and their addition reactions, we observed that this procedure did not give satisfactory results in a number of cases. We therefore started a search for methods enabling us to generate and attempt to cause to react specifically substituted benzopyranones (compounds $\mathbf{8 a - c}$) under more convenient conditions.

Results and Discussion

The drastic conditions used to generate benzopyranones (T $140^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}$) generally do not allow one to isolate them. Moreover, this procedure brought about side-reactions when benzopyranones with $\mathrm{R}^{1}=\mathrm{H}$ were used or when attempts were made to trap them with less reactive or unstable dienophiles.

13e, we believe that its formation occurs via the pathway outlined in Scheme 3 and probably not via an intermediate of type 9, such as that proposed by Elliot and Evans. ${ }^{11}$
Indeed, if $\mathrm{R}^{1}=\mathrm{Me}$ an intermolecular Diels-Alder reaction can take place between the benzopyranone 8 and its tautomer 10, yielding spiro compound 11. An intermediate 11c of that type was isolated and thermolysed at $260^{\circ} \mathrm{C}$ by Jones ${ }^{12}$ to yield the intermediate acid 12c (Scheme 3).

a; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}$
b; $R^{1}=R^{3}=R^{5}=H, R^{2}=R^{4}=O M e$
c: $R^{1}=M e, R^{2}=R^{3}=R^{4}=R^{5}=H$
d; $R^{1}=R^{2}=R^{5}=H, R^{3}=R^{4}=O M e$
e: $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{5}=\mathrm{H}$
Scheme $2 \mathbf{8 f}$ and $\mathbf{8 g}$ are described in the text

Scheme 3 Reagent: $\mathrm{i}_{\mathrm{Ac}}^{2} \mathrm{O}$

Table $1 \quad{ }^{1} \mathrm{H}$ NMR data (δ) of the benzopyranone $\mathbf{8 a}{ }^{a}$

Coupling and integration						
δ	Assignment	δ	Coupling	Assignment	Δ^{b}	
2.60	$\mathrm{~d}, J 1.2,3 \mathrm{H}$	1-Me	5.97	$\mathrm{~m}, 1 \mathrm{H}$	$4-\mathrm{H}$	-0.03
3.88	$\mathrm{~s}, 3 \mathrm{H}$	7-OMe	6.23	$\mathrm{~s}, 1 \mathrm{H}$	$5-\mathrm{H}$	0.60
3.94	$\mathrm{~s}, 3 \mathrm{H}$	6-OMe	6.35	$\mathrm{br} \mathrm{s}, 1 \mathrm{H}$	$8-\mathrm{H}$	0.60
${ }^{a} 250$	$\mathrm{MHz} ;$	solvent	$\mathrm{CDCl}_{3} ;$	standard	$\mathrm{Me}_{4} \mathrm{Si}$.	${ }^{b} \Delta=\delta\left(\mathrm{CDCl}_{3}\right)-$
$\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.						

In the literature there is some evidence that alkoxy substituents accelerate the decarboxylation of both isochroman-3-ones and benzopyranone adducts. ${ }^{13}$ This can explain why intermediates 11a and 11e were not isolated. Furthermore, owing to the methoxy-substitution pattern a fast cyclisation of compounds 12 a and 12 e activated by $\mathrm{Ac}_{2} \mathrm{O}$ can be envisaged.

In order to avoid these side-reactions and to maintain a valuable lactone function, we investigated the generation and reactions of compounds $\mathbf{8 a - d}$ under gentle conditions ($20-$ $80^{\circ} \mathrm{C}$). Reactions were used that find common acceptance in peptide chemistry; ${ }^{14}$ e.g. 1,3-dicyclohexylcarbodiimide (DCC), 2-ethoxy- N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ), 2-isobutoxy- N-isobutoxycarbonyl-1,2-dihydroquinoline (IIDQ), disuccinimidyl carbonate (DSC).

Using the DCC method with substrate 7 a at $20^{\circ} \mathrm{C}$ in the absence of dienophiles we observed the formation of a yellow product. After careful chromatography $\left(\mathrm{SiO}_{2}\right)$ of the reaction mixture we obtained a fraction containing the benzopyranone 8a, which was spectroscopically characterised. Until now, isolation of benzo[$b]$ pyranones could only be achieved with the
more stable analogues $\mathbf{8 f}\left(\mathrm{R}^{1}=\mathrm{R}^{5}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\right.$ $\mathrm{H})$ and $\mathbf{8 g} \quad\left[\mathrm{R}^{1}=3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \quad \mathrm{R}^{2}=\mathrm{R}^{5}=\mathrm{H}\right.$, $\left.\mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{OCH}_{2} \mathrm{O}\right] .{ }^{15}$ The ${ }^{1} \mathrm{H}$ NMR characteristics of the yellow compound $8 \mathbf{8}$ [$\left.\lambda_{\text {max }}(\mathrm{MeOH}) 437 \mathrm{~nm}\right]$ are given in Table 1.

Owing to the aromatic-solvent-induced shift (ASIS) in deuteriobenzene ($\Delta \delta-0.03 \mathrm{ppm}$), the absorption at $\delta 5.97$ was assigned to $4-\mathrm{H}$. The absorption at $\delta 6.35$ was assigned to the 8 H atom on the grounds of its long-range coupling (br s) with the $4-\mathrm{H}$ atom. The δ-values for 4 -, 5 - and $8-\mathrm{H}$ indicate the nonaromatic character of the benzopyranone system. In solution, the benzopyranone $8 \mathbf{a}$ was quasi-stable at $-30^{\circ} \mathrm{C}$. At room temperature it reacted slowly with oxygen to form compound 14, similar to the product observed by Smith et al. ${ }^{16}$ in the oxidation of 1,4-diphenyl-2-benzopyran-3-one. Product 14 was observed partly to rearrange into compound 15 , which was isolated.

In order to obtain some idea about the efficacy of our synthetic method we compared the yields of the isolated adducts from reaction of benzopyranones $\mathbf{8 a - c}$ and N-phenylmaleimide (NPM). The cyclodehydratation of 2-acetyl-4,5-dimethoxyphenylacetic acid $7 \mathbf{a}$ and 2 -formyl-3,5-dimethoxyphenylacetic acid $7 \mathbf{b}$ by the acetic anhydride method in the presence of NPM (5 mol equiv.) did not lead to the isolation of the expected benzopyranone-NPM adducts ($16 \mathbf{a}$ and \mathbf{b}). These intermediate

Table 2 Product distribution (\%) in the reaction of benzopyranones 8a \mathbf{c} with NPM using different synthetic methods

	Product							
Method	$\mathbf{1 6 a}$	$\mathbf{1 7 a}$	$\mathbf{1 6 b}$	$\mathbf{1 7 b}$	$\mathbf{1 6 c}^{a}$			
$\mathrm{Ac}_{2} \mathrm{O}$		89		95	81^{b}			
DCC/2-hydroxypyridine	97		98		50			
DSC	91		85		61			
EEDQ, IIDQ	92		83		98			

${ }^{a}$ 16c: $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H} .{ }^{b}$ Ref. 18.

Table 3 Yield (\%) of products $\mathbf{2 6 - 3 1}$ in the reaction of compounds 7a and 7d with dienophiles 22-25

	Product			
Method	$\mathbf{2 6 - 2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}-\mathbf{3 0}$	$\mathbf{3 1}$
$\mathrm{Ac}_{2} \mathrm{O}$	41	0	32	0
HIDQ	83	49	62	85

adducts lost CO_{2} to yield an ortho-quinodimethane system, which was trapped with a second equivalent of NPM to yield compounds 17a and 17b (Scheme 4).

Scheme 4 Non-systematic numbering scheme
Use of DCC as the reagent in benzene with the acid 7a led to Diels-Alder adduct 16 a but only in low yield (29%). A condensation product (58%) resulting from an intramolecular rearrangement of the intermediate ortho-acyl isourea derivative was observed. As in peptide chemistry, ${ }^{17}$ this rearrangement could be suppressed by using the catalytic additive 2 hydroxypyridine and by changing the solvent from benzene to acetonitrile. ${ }^{17 b}$ With this modified DCC-method, a yield increase from 29 to 98% for the previous reaction was established. From the results shown in Table 2, it appears that the DSC-, EEDQ-, IIDQ-methods also give high yields of adducts $16 \mathrm{a}-\mathrm{c}$ with NPM as dienophile. However, the IIDQmethod seems to be better for compound $\mathbf{1 6 c}$ (Table 2).

The configuration of the adducts was deduced from their NMR spectra. The endo-configuration was assigned to adducts 16a-c based on the shielding effect of the aromatic ring A on the ortho-protons of the N-phenyl group and from the coupling constant of $6-\mathrm{H}$ and $6 \mathrm{a}-\mathrm{H}(J 3.5 \mathrm{~Hz})$. In the case of the exoadduct, the coupling constant would be smaller. ${ }^{19}$

The efficacy of the IIDQ-method was further confirmed by the reaction of acid 7a with another dienophile compound 18. With the acetic anhydride method, the latter (Scheme 5) gave
only a rearranged product (compound 19). This probably results from a 1,5 -acetyl migration in the intermediate orthoquinodimethane system formed by decarboxylation of the expected adduct. The stereochemistry of compound 19 was deduced from its ${ }^{1} \mathrm{H}$ NMR spectrum. The small coupling constant ($J 2 \mathrm{~Hz}$) between $3-\mathrm{H}$ and $4-\mathrm{H}$ can be explained assuming a trans-configuration with a pseudo-axial position for 3-Me and a dihedral angle of $c a .90^{\circ}$.

Scheme 5 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}$; ii, IIDQ. Non-systematic numbering scheme

When the DCC/2-hydroxypyridine or DSC-method was used, no adducts at all, or only a low yield of adducts 20 and 21 , could be isolated. With IIDQ (1.2 mol equiv.) in acetonitrile at $60^{\circ} \mathrm{C}$, a 92% yield of the adducts was obtained. The configuration of the adducts 20 and 21 was deduced from the shielding effect of the aromatic ring A on 3-Me in product 20 (δ $0.70 ; \delta 1.40$ in 21) and on $3-\mathrm{H}$ in product $21(\delta 2.74 ; \delta 3.44$ in 20$)$. The above mentioned IIDQ reagent was shown to be very efficient in the generation and reaction of the benzopyranone $\mathbf{8 a}$ with less reactive or unstable dienophiles (e.g. compounds 22 24). It was also efficient in the reaction of the benzopyranone $\mathbf{8 d}$ with the 2,3 -dimethylindenone 25 . With the acetic anhydride method only a low or no yield of adducts 26-31 (Scheme 6 and Table 3) was obtained.

The proposed regiochemistry in compounds $28-\mathbf{3 0}$ is in agreement with the coupling between $6-\mathrm{H}$ and $6 \mathrm{a}-\mathrm{H}(J 2.1)$. The same regiochemistry is assumed for adducts 26 and 27 because the position and solvent shift for the $1-\mathrm{Me}$ and the $4-\mathrm{H}$ NMR signals in both compounds are comparable with those of compounds $28-\mathbf{3 0}$. The regiochemistry of adduct $\mathbf{3 1}$ is assumed to be the same as in similar adducts described in a previous paper. ${ }^{20}$

The endo-configuration of compound 29 was assigned on the grounds of the shielding effect of the aromatic ring on $8-\mathrm{H}$ and $9-\mathrm{H}$. Owing to the similarity of the signals of $6 \mathrm{a}-\mathrm{H}$ in exostructure 30 and in 28 (respectively $\delta 2.72$ and 2.78) we assume an exo-structure for compound 28 . The $6 \mathrm{a}-\mathrm{H}$ signal is shifted to lower field ($\delta 3.35$) in compound 29.

Distinction between compounds 26 and 27 was made by consideration of the ${ }^{1} \mathrm{H}$ NMR signals of Me^{A} and Me^{B}. They appear much closer to each other in compound $26\left(\mathrm{Me}^{\mathrm{A}}: \delta 1.19\right.$; $\mathrm{Me}^{\mathrm{B}}: \delta 1.34$) than in compound $27\left(\mathrm{Me}^{\mathrm{A}}: \delta 0.75 ; \mathrm{Me}^{\mathrm{B}}: \delta 1.68\right)$. This is interpreted in terms of four different anisotropic effects: ${ }^{21}$ shielding $(+)$ from the ester function and lactone bridge, a more pronounced shielding effect from the benzene ring $(++)$ and deshielding from the nitrile group (-). The assignment of the endo-structure for adduct 31 is based on the highfield absorption of the aromatic protons ($\delta 6.37-7.4$) and the aromatic methoxy group ${ }^{20}(\delta 3.60)$.

Conclusions.-The acetic anhydride method for the generation of benzopyranones from o-acylphenylacetic acids and for
7a

22

$+$

$7 a+$

24

29
$+$

30
7d +

Scheme 6 Non-systematic numbering schemes
trapping them with dienophiles was shown to be inefficient in some cases. This is due to, e.g., the formation of chrysene byproducts or decomposition of the primary adduct. This was avoided by the use of alternative reagents. IIDQ in particular allowed the isolation of Diels-Alder adducts of problematic benzopyranones with some uncommon dienophiles, which could not be used with the acetic anhydride method. The thermolysis of some of these adducts is under current investigation.

Experimental

IR spectra were recorded as thin films between NaCl plates or as solids in KBr pellets on a Perkin-Elmer 297 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WM 250 spectrometer operating at 250 MHz and 62.5 MHz , respectively. J-Values are given in Hz . Mass spectra were recorded on a Kratos MS 50 instrument operating at 70 eV and $150-250^{\circ} \mathrm{C}$ as required. Exact mass measurements were performed at a resolution 10000 . MN-Kieselgel 60 ($230-400 \mathrm{Mesh}$) and chloroform stabilised with amylene were used for chromatographic separations. All solvents and reagents were dried and purified by standard procedures. All cycloadditions were performed under nitrogen or in vacuo. Phenylacetic acids 7ad, ${ }^{11,22}$ dienophiles $\mathbf{1 8},{ }^{23} 22,{ }^{24} \mathbf{2 3},{ }^{25} \mathbf{2 4}{ }^{26}$ and $25{ }^{27}$ were prepared as previously described.

Generation of the 6,7-Dimethoxy-1-methyl-2-benzopyran-3one 8a by the DCC-Method.-A solution of the phenylacetic acid $7 \mathrm{a}(0.21 \mathrm{~g}, 0.9 \mathrm{mmol}), \mathrm{DCC}(0.172 \mathrm{~g}, 0.9 \mathrm{mmol})$ and 2hydroxypyridine $0.112 \mathrm{~g}, 1.2 \mathrm{mmol}$) in dry acetonitrile $\left(6 \mathrm{~cm}^{3}\right)$ was stirred under nitrogen for 2 h at $25^{\circ} \mathrm{C}$. After removal of the solvent under reduced pressure the residue was chromatographed on silica gel (fast column) with $90 \% \mathrm{CHCl}_{3}-10 \%$ EtOAc (maintaining a nitrogen atmosphere during all operations). A yellow fraction was concentrated under nitrogen and afforded the spectroscopically identified title compound 8a,
$v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1750(\mathrm{CO}) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.9$ $(\mathrm{q}, 1-\mathrm{Me}), 55.7(\mathrm{q}, 6-\mathrm{OMe}), 56.2(\mathrm{q}, 7-\mathrm{OMe}), 99.6\left(2 \times \mathrm{brd}, J_{\mathrm{CH}}\right.$ $168, \mathrm{C}-4), 100.0\left(2 \times \mathrm{s}, J_{\mathrm{CH}} 160, \mathrm{C}-8\right), 100.7$ (dd, $J_{\mathrm{CH}} 162, \mathrm{C}-5$), 111.8 (m, C-8a), 146.5 (d, C-4a), 148.4 (m, C-7 or -6), 157.3 (m, C6 or -7), $161.5(\mathrm{~m}, \mathrm{C}-1)$ and $162.3(\mathrm{~d}, \mathrm{CO}) ; m / z 220\left(\mathrm{M}^{+}, 52 \%\right)$, 192 (100), 177 (17) and 149 (34).

Decomposition of the Benzopyranone 8a: Formation of 2-Acetyl-4,5-dimethoxybenzaldehyde 14 and 5,6-Dimethoxy-3-methyl-3H-isobenzofuran-1-one 15.-A solution of the benzopyranone 8 a in CHCl_{3} was exposed for 24 h to air and light. TLC and NMR analysis of the evaporated mixture indicated the formation of two compounds. Column chromatography ($\mathrm{SiO}_{2} ; 5 \% \mathrm{EtOAc}-95 \% \mathrm{CHCl}_{3}$ as eluent) gave a fraction containing a pure component to which the structure of compound 15 was assigned, based on the NMR data shown below. For the other compound, which decomposed on the column, structure 14 was proposed.
For compound 14: $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.64(3 \mathrm{H}, \mathrm{s}), 3.99(3$ $\mathrm{H}, \mathrm{s}), 4.01(3 \mathrm{H}, \mathrm{s}), 7.17(1 \mathrm{H}, \mathrm{s}), 7.45(1 \mathrm{H}, \mathrm{s})$ and $10.2(1 \mathrm{H}, \mathrm{s})$.
For compound 15 (Found: M^{+}, 208.0734. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{M}, 208.0736) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1720-1750(\mathrm{CO}) ; \delta_{\mathrm{H}}[250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}: \Delta=\delta\left(\mathrm{CDCl}_{3}\right)-\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \mathrm{ppm}\right] 1.62(3 \mathrm{H}, \mathrm{d}, J 7, \Delta$ 0.46), $3.94(3 \mathrm{H}, \mathrm{s}, \Delta 0.70), 4.00(3 \mathrm{H}, \mathrm{s}, \Delta 0.72), 5.46(1 \mathrm{H}, \mathrm{q}, J 7, \Delta$ $0.52), 6.83(1 \mathrm{H}, \mathrm{s}, \Delta 0.66)$ and $7.27(1 \mathrm{H}, \mathrm{s}, \Delta 0.10) ; m / z 208\left(\mathrm{M}^{+}\right.$, 48%), 193 (54) and 165 (100).

Trapping of Benzopyranones 8a-c with NPM: Synthesis of the Benzopyranone-NPM Adducts 16a-c.-(a) With DCC and 2hydroxypyridine in acetonitrile: general procedure. A mixture of a phenylacetic acid $7 \mathrm{a}-\mathrm{c}(0.200 \mathrm{~g}, c a .0 .9 \mathrm{mmol})$, DCC $(1 \mathrm{mmol})$ and 2-hydroxypyridine (1.2 mmol) in dry acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ was stirred under nitrogen for 2 h at $25^{\circ} \mathrm{C}$ (yellow colour of benzopyranone appeared). Then, a solution of NPM (10 mmol) in dry $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to the mixture, the solution was stirred at room temperature for 16 h and then evaporated under reduced pressure and the residue was
chromatographed on silica gel with gradient elution (100% CHCl_{3} to $5 \% \mathrm{EtOAc}-95 \% \mathrm{CHCl}_{3}$) to give adducts $\mathbf{1 6 a - c}$, which were crystallised from MeOH .

For compound $16 \mathbf{a}\left(0.32 \mathrm{~g}, 97 \%\right.$); m.p. 206-207 ${ }^{\circ} \mathrm{C}$ (Found: M^{+}, 393.1209. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{6}$ requires $\mathrm{M}, 393.1212$); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1720$ and $1770(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.22(3 \mathrm{H}, \mathrm{s})$, $3.64(1 \mathrm{H}, \mathrm{d}, J 8.5), 3.71(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 3.5$), 3.88(3 \mathrm{H}, \mathrm{s}), 3.90$ $(3 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{d}, J 3.5), 6.55(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}$, s) and $7.31(3 \mathrm{H}, \mathrm{m}) ; m / z 393\left(\mathrm{M}^{+}, 45 \%\right), 349(45), 220(57)$ and 202 (100).

For compound $16 \mathrm{~b}\left(0.33 \mathrm{~g}, 98 \%\right.$); m.p. $161-163^{\circ} \mathrm{C}$ (Found: $\mathbf{M}^{+}, 379.1056 . \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires $\mathrm{M}, 379.1058$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1725$ and $1770(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.66(1 \mathrm{H}, \mathrm{dd}, J$ 8.5 and 3.2), $3.80(6 \mathrm{H}, \mathrm{s}), 3.96(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 4.5$), 4.39(1 \mathrm{H}$, $\mathrm{d}, J 3.8), 6.37(1 \mathrm{H}, \mathrm{d}, J 4.5), 6.44(1 \mathrm{H}, \mathrm{d}, J 2.4), 6.50(1 \mathrm{H}, \mathrm{d}, J$ 2.4), $6.60(2 \mathrm{H}, \mathrm{m})$ and $7.33(3 \mathrm{H}, \mathrm{m}) ; m / z 379\left(\mathrm{M}^{+}, 10 \%\right) 335(1)$, 224 (100), 143 (100) and 99 (100).

For compound $16 \mathrm{c}\left(0.19 \mathrm{~g}, 50 \%\right.$); m.p. $150^{\circ} \mathrm{C}$ (Found: M^{+}, 333.1000. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\mathrm{M}, 333.1001$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1720 and $1770(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.24(3 \mathrm{H}, \mathrm{s}), 3.60(1$ $\mathrm{H}, \mathrm{d}, J 8), 3.69(1 \mathrm{H}, \mathrm{dd}, J 8$ and 3.5$), 4.45(1 \mathrm{H}, \mathrm{d}, J 3.5), 6.45(2 \mathrm{H}$, $\mathrm{m}), 7.27(3 \mathrm{H}, \mathrm{m})$ and $7.41(4 \mathrm{H}, \mathrm{m}) ; m / z 333\left(\mathrm{M}^{+}, 17 \%\right), 289(23)$, 233 (13) and 142 (100).

On performing the reaction of the aldehyde $7 \mathbf{a}$ with DCC in benzene ($5 \mathrm{~cm}^{3}$) without 2-hydroxypyridine, compound 16a was formed in low yield $(0.095 \mathrm{~g}, 29 \%)$ together with an o acyl isourea derivative ($0.22 \mathrm{~g}, 58 \%$).
(b) The DSC-method: general procedure. A mixture of a phenylacetic acid $7 \mathbf{a}-\mathbf{c}(0.2 \mathrm{~g}, c a .0 .9 \mathrm{mmol})$, DSC (1.2 mmol), dry triethylamine (1 mmol) and NPM (5 mmol) in dry acetonitrile ($5 \mathrm{~cm}^{3}$) was stirred under nitrogen for 24 h at room temperature. After work-up as prescribed above the adducts $16 \mathrm{a}-\mathrm{c}$ were obtained in 91,85 and 61% yield, respectively.
(c) The IIDQ-or EEDQ-method: general procedure. A solution of a phenylacetic acid $7 \mathrm{a}-\mathrm{c}(0.2, c a .0 .9 \mathrm{mmol})$, EEDQ or IIDQ $(1.2 \mathrm{mmol})$ and NPM (3 mmol) in dry acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ was heated at $50^{\circ} \mathrm{C}$ under nitrogen for 24 h and then evaporated under reduced pressure; the residue was dissolved in CHCl_{3} ($200 \mathrm{~cm}^{3}$). The solution was extracted successively three times with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(3 \times 30 \mathrm{~cm}^{3}\right)$ saturated aq. NaHCO_{3} and water. The chloroform layer was dried on $\mathbf{M g S O}_{4}$, then evaporated under reduced pressure and the residue was purified by column chromatography on silica gel with $5 \% \mathrm{EtOAc}-95 \%$ CHCl_{3} as eluent. The yield of each adduct (16a-c) was, respectively, 92,83 and 98%.
(d) Acetic anhydride method: generation of bis-adducts 17a and 17b. The phenylacetic acid $7 \mathbf{a}(0.23 \mathrm{~g}, 1 \mathrm{mmol})$ or the phenylacetic acid $7 \mathrm{~b}(0.4 \mathrm{~g}, 1.8 \mathrm{mmol})$, NPM (5 mmol for $7 \mathrm{a}, 10$ mmol for $7 \mathbf{b}$ and acetic anhydride ($6 \mathrm{~cm}^{3}$; freshly distilled from quinoline) were refluxed for 16 h under nitrogen. Excess of acetic anhydride was evaporated off under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$ with $95 \% \mathrm{CHCl}_{3}-5 \%$ EtOAc and afforded compound $17 \mathbf{a}$ or 17 b , which was recrystallised from methanol.
For compound $17 \mathrm{a}\left(0.47 \mathrm{~g}, 89 \%\right.$); m.p. $>240^{\circ} \mathrm{C}$ (Found: M^{+}, 522.1858. $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{M}, 522.1858$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1717 and $1775(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.15(3 \mathrm{H}, \mathrm{s}), 2.94(2$ $\mathrm{H}, \mathrm{d}, J 9), 3.27(2 \mathrm{H}, \mathrm{dd}, J 9$ and 3$), 3.80(6 \mathrm{H}, \mathrm{s}), 4.12(1 \mathrm{H}, \mathrm{t}, J 3)$, $6.60(4 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s})$ and $7.30(6 \mathrm{H}, \mathrm{m}) ; m / z$ $522\left(\mathrm{M}^{+}, 100 \%\right), 349(43)$ and $200(67)$.
For compound $17 \mathrm{~b}\left(0.86 \mathrm{~g}, 95 \%\right.$); m.p. $>240^{\circ} \mathrm{C}$ (Found: M^{+}, 508.1627. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{M}, 508.1634$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1720 and $1770(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.32(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.74$

* Systematic name: 1,3-diacetyl-6,7-dimethoxy-2,4-dimethyl-1,2-dihydronaphthalene.
($3 \mathrm{H}, \mathrm{s}$), $3.75(3 \mathrm{H}, \mathrm{s}), 4.18(1 \mathrm{H}, \mathrm{br}$ s), $4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.43(2 \mathrm{H}$, $\mathrm{m}), 6.65(4 \mathrm{H}, \mathrm{m})$ and $7.31(6 \mathrm{H}, \mathrm{m}) ; m / z 508\left(\mathrm{M}^{+}, 100 \%\right), 335$ (12) and 188 (75).

Trapping of the Benzopyranone 8a with Dienophile 18.- $\mathrm{Ac}_{2} \mathrm{O}-$ Method: generation of 2,4-diacetyl-6,7-dimethoxy-1,3-dimethyl-3,4-dihydronaphthalene* 19. A mixture of compound $7 \mathrm{a}(0.4 \mathrm{~g}$, 1.7 mmol), dienophile $\mathbf{1 8}(1 \mathrm{~g}, 8 \mathrm{mmol})$ and acetic anhydride (20 cm^{3}; freshly distilled from quinoline) were refluxed for 3 h under nitrogen. The mixture was evaporated under reduced pressure and the residue was chromatographed $\left(\mathrm{SiO}_{2} ; 95 \% \mathrm{CHCl}_{3}-5 \%\right.$ $\mathrm{EtOAc})$ to give the decarboxylated product $19(0.43 \mathrm{~g}, 85 \%$) (Found: $\mathrm{M}^{+}, 302.1515 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{M}, 302.1518$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1610(\mathrm{C}=\mathrm{C})$ and $1670(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 7), 2.01(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s})$, $3.30(1 \mathrm{H}, \mathrm{d}, J 2), 3.34(1 \mathrm{H}, \mathrm{qd}, J 2$ and 7$), 3.90(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}$, s), $6.77(1 \mathrm{H}, \mathrm{s})$ and $6.95(1 \mathrm{H}, \mathrm{s}) ; m / z 302\left(\mathrm{M}^{+}, 13 \%\right), 259(28)$, 217 (99) and 202 (100).

IIDQ-method: generation of adducts 20 and 21. A mixture of compound $7 \mathbf{a}(0.2 \mathrm{~g}, 0.9 \mathrm{mmol})$, IIDQ $(1.2 \mathrm{mmol})$ and dienophile $18(5 \mathrm{mmol})$ in dry acetonitrile $\left(3 \mathrm{~cm}^{3}\right)$ was degassed by subsequent freeze-pump-thaw cycles and was then heated in a sealed tube for $c a .18 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$. After evaporation of solvent and excess of dienophile, followed by usual work-up and chromatography $\left(\mathrm{SiO}_{2}: 95 \% \mathrm{CHCl}_{3}-5 \%\right.$ EtOAc) as for compounds 16a-c, the adducts 20 and 21 were obtained.

For compounds 20 and 21 ($0.27 \mathrm{~g}, 92 \%$) (ratio 60:40) (Found: $\mathrm{M}^{+}, 346.1419 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\mathrm{M}, 346.1416$); $v_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1700-1720(\mathrm{CO})$; for $20: \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.70(3 \mathrm{H}, \mathrm{d}$, $J 7), 1.87-2.33(9 \mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{qd}, J 3$ and 7$), 3.70(1 \mathrm{H}, \mathrm{d}, J 3)$, $3.89(6 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{s})$ and $7.10(1 \mathrm{H}, \mathrm{s})$; for adduct $21: \delta_{\mathrm{H}} 1.40$ ($3 \mathrm{H}, \mathrm{d}, J 7$), $1.87-2.33(9 \mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{qd}, J 2$ and 7), $3.74(1 \mathrm{H}$, d, $J 2$), $3.90(6 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{s})$ and $6.79(1 \mathrm{H}, \mathrm{s}) ; m / z 346\left(\mathrm{M}^{+}\right.$, 7%), 220 (62) and 192 (100).

Trapping of compounds 7a and 7d with Dienophiles 22-25.-IIDQ-method: synthesis of compounds 26-32, general procedure. A mixture of an acid $7 \mathbf{a}$ or $7 \mathbf{d}(0.2 \mathrm{~g}, c a .0 .9 \mathrm{mmol})$, IIDQ (1.2 mmol), and dienophile 23 (5 mmol), 22 and $24(10 \mathrm{mmol})$, or $25(2 \mathrm{mmol})$ in dry acetonitrile ($3 \mathrm{~cm}^{3}$) was allowed to react, worked up and chromatographed as described for the reaction with dienophile 18 . Adducts $27-32$ were obtained as single products or as mixture of isomers.

Products 26 and $27(0.26 \mathrm{~g}, 83 \%)$ were obtained as a $1: 1$ mixture which could be partially separated by HPLC.

Compound 26 (Found: $\mathrm{M}^{+}, 373.1519 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6}$ requires M, 373.1525); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1750-1770(\mathrm{CO})$ and $2220(\mathrm{CN})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{t}, J$ 7), $2.12(3 \mathrm{H}, \mathrm{s}), 3.46(1 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}$, $\mathrm{q}, J 7), 6.82(1 \mathrm{H}, \mathrm{s})$ and $6.93(1 \mathrm{H}, \mathrm{s}) ; m / z 373\left(\mathrm{M}^{+}, 14 \%\right)$ and 220 (100).

For compound 27; $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} \quad 1750-1770(\mathrm{CO})$ and $2220(\mathrm{CN}) ; \delta_{\mathbf{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{t}, J 7)$, $1.68(3 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{s}), 3.43(1 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s})$, $4.16(2 \mathrm{H}, \mathrm{q}, J 7), 6.74(1 \mathrm{H}, \mathrm{s})$ and $7.00(1 \mathrm{H}, \mathrm{s}) ; m / z 373\left(\mathrm{M}^{+}\right.$, 14%) and 220 (100).

Compound 28 was a yellow oil ($0.15 \mathrm{~g}, 49 \%$) (Found: \mathbf{M}^{+}, 374.1358. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $\left.\mathrm{M}, 374.1365\right) ; v_{\text {max }}\left(\mathrm{NaCl} / \mathrm{cm}^{-1}\right.$ $1705(\mathrm{CO}), 1720\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ and $1750(\mathrm{CO}$ lactone $) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.86(2 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.19(2 \mathrm{H}, \mathrm{m}), 2.59(2 \mathrm{H}, \mathrm{m})$, $2.78(1 \mathrm{H}, \mathrm{m}), 3.55(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{d}, J 2.1), 3.90(3 \mathrm{H}, \mathrm{s}), 3.92$ $(3 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{s})$ and $6.97(1 \mathrm{H}, \mathrm{s}) ; m / z 374\left(\mathrm{M}^{+}, 14 \%\right), 330$ (7), 220 (80) and 192 (100).

For compounds 29 and 30 ($0.19 \mathrm{~g}, \mathbf{6 2 \%}$) (ratio $1: 3$) (Found: $\mathrm{M}^{+}, 370.1407 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\mathrm{M}, 370.1416$); $v_{\max }(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1665(\mathrm{CO}), 1725(\mathrm{CHO})$ and $1765(\mathrm{CO})$.

For compound 29; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{s}), 1.34$ (3 $\mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{t}, J 2), 3.89(6 \mathrm{H}, \mathrm{s}), 4.10(1 \mathrm{H}, \mathrm{d}, J 2)$,
$5.24(1 \mathrm{H}, \mathrm{d}, J 10), 6.16(1 \mathrm{H}, \mathrm{dd}, J 10$ and 2 Hz$), 6.64(1 \mathrm{H}, \mathrm{s}), 6.78$ ($1 \mathrm{H}, \mathrm{s}$) and $10.32(1 \mathrm{H}, \mathrm{s})$.
For compound $30 ; \delta_{\mathbf{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{s}), 1.46(3$ $\mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.72(1 \mathrm{H}, \mathrm{t}, J 2), 3.89(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s})$, $4.06(1 \mathrm{H}, \mathrm{d}, J 2), 6.20(1 \mathrm{H}, \mathrm{d}, J 10), 6.71(1 \mathrm{H}, \mathrm{dd}, J 10$ and 2$)$, $6.77(1 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{s})$ and $10.00(1 \mathrm{H}, \mathrm{s}) ; m / z 370\left(\mathrm{M}^{+}, 8 \%\right)$ and 220 (100).

For compound $31\left(0.25 \mathrm{~g}, 85 \%\right.$); m.p. $179-181^{\circ} \mathrm{C}$ (Found: M^{+}, 394.1419. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\left.\mathrm{M}, 394.1416\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1700 and $1745(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52(3 \mathrm{H}, \mathrm{s}), 1.58(3$ $\mathrm{H}, \mathrm{s}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.97(1 \mathrm{H}, \mathrm{s}), 5.37(1$ $\mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{d}, J 3), 7.14(1 \mathrm{H}, \mathrm{dd}, J$ 3 and 8) and $7.42(1 \mathrm{H}, \mathrm{d}, J 8) ; m / z 394\left(\mathrm{M}^{+}, 10 \%\right), 206(100)$ and 178 (28).

With the $\mathrm{Ac}_{2} \mathrm{O}$-method with dienophiles 22-25, the chrysene $13 a^{11}$ was observed when using substrate 7a and low yields (30$40 \%$) of compounds 26 and 27 , or 29 and 30 , or no yield at all [for adducts 28 and 31] were obtained.

Acknowledgements

We are indebted to the FKFO and the 'Ministerie voor Wetenschapsbeleid' for financial support. We are also grateful to Dr. F. Compernolle, Dr. S. Toppet, Mr. R. De Boer and Mr. P. Valvekens for technical assistance.

References

1 W. Oppolzer, Synthesis, 1978, 793; T. Kametani and H. Nemoto, Tetrahedron, 1981, 37, 3; K. C. Nicolaou, W. E. Barnette and P. Ma, J. Org. Chem., 1980, 45, 1463.

2 J. L. Charlton and M. M. Alauddin, Tetrahedron, 1987, 43, 2873.
3 T. Kametani and F. Fukumoto, Heterocycles, 1977, 8, 465; M. P. Cava and O. R. Napier, J. Am. Chem. Soc., 1957, 79, 1701; I. L. Klundt, Chem. Rev., 1970, 70, 471.
4 J. Holland and D. W. Jones, J. Chem. Soc. C, 1971, 608.
5 C. Flynn and J. Michl, J. Am. Chem. Soc., 1974, 96, 3280; N. R. Patel, in The Chemistry of Heterocyclic Compounds, ed. R. N. Castle, Wiley, New York, 1973, vol. 27, p. 323.
6 M. P. Cava and N. M. Pollack, J. Am. Chem. Soc., 1966, 88, 4112; M. P. Cava and A. A. Deana, J. Am. Chem. Soc., 1959, 81, 4266.

7 U. Wiersum, Aldrichimica Acta, 1981, 14, 53; W. Friedrichsen, in Advances in Heterocyclic Chemistry, eds. A. R. Katritzky and A. J. Boulton, Academic. New York, 1980, vol. 26, p. 135; L. F. Fieser and
M. Flieser, Reagents for Organic Synthesis, Wiley, New York, 1967, vol. 1, p. 342; L. Fieser and M. Haddadin, Can. J. Chem., 1965, 43, 1599; B. Keay, D. Lee and R. Rodrigo, Tetrahedron Lett., 1980, 21, 3663; J. G. Smith and G. Kruger, J. Org. Chem., 1985, 50, 5759; J. Netka, S. Crump and B. Rickborn, J. Org. Chem., 1986, 51, 1189.
8 J. D. White and M. E. Mann, in Advances in Heterocyclic Chemistry, eds. A. R. Katritzky and A. J. Boulton, Academic, New York, 1969, vol. 10, p. 113; W. Baker, J. McOmie and D. Preston, J. Chem. Soc., 1961, 2971; L. Carpino, J. Am. Chem. Soc., 1962, 84, 2196.
9 D. A. Bleasdale, D. W. Jones, G. Maier and H. P. Reisenauer, J. Chem. Soc., Chem. Commun., 1983, 1095 and references cited therein; D. A. Bleasdale and D. W. Jones, J. Chem. Soc., Chem. Commun., 1985, 1027.
10 S . Van Den Branden, personal communication
11 I. Elliott, Jr. and S. Evans, J. Org. Chem., 1973, 38, 3425.
12 D. W. Jones and E. Kneen, J. Chem. Soc., Perkin Trans. 1, 1975, 175.
13 D. W. Jones and A. M. Thompson, J. Chem. Soc., Chem. Commun., 1988, 1095.
14 M. Bodanszky, Principles of Peptide Synthesis, Springer-Verlag, Berlin, 1984, p. 9.
15 D. W. Jones and A. M. Thompson, J. Chem. Soc., Chem. Commun., 1987, 1797.
16 J. P. Smith and G. B. Schuster, J. Am. Chem. Soc., 1978, 100, 2564; J. P. Smith, A. C. Schrock and G. B. Schuster, J. Am. Chem. Soc., 1982, 104, 1041.
17 (a) Ref. 14, p. 48; (b) J. C. Sheeman, M. Goodman and G. P. Hess, J. Am. Chem. Soc., 1956, 78, 1367.
18 J. M. Holland and D. W. Jones, J. Chem. Soc. C, 1970, 536
19 N. S. Bhacca and D. H. Williams, J. Am. Chem. Soc., 1964, 86, 2742.
20 D. J. Vanderzande, R. A. Ceustermans, H. J. Martens, S. H. Toppet and G. J. Hoornaert, J. Org. Chem., 1983, 48, 2188.
21 L. Jackmann and S. Sternhell, Applications of NMR Spectroscopy in Organic Chemistry, Pergamon, Oxford, 1969, p. 61.
22 S. Afral, R. Pike, N. Rama, I. Smith, E. Turner and W. Whalley, J. Chem. Soc., Perkin. Trans. 1, 1978, 81; J. D. Halford and B. Weissmann, J. Org. Chem., 1953, 18, 30; G. Krams and M. Krolski, J. Org. Chem., 1986, 51, 3347 (hydrolysis of the described ester).

23 B. D. Wilson, J. Org. Chem., 1963, 28, 314.
24 F. D. Popp and A. Catala, J. Org. Chem., 1961, 26, 2738.
25 D. Liotta, C. Barnum, R. Puleo, G. Zima, C. Boyer and H. S. Kezar, J. Org. Chem., 1981, 46, 2920.

26 H. Secor, M. Bourlas and J. De Bardeleben, Experientia, 1971, 28, 18.
27 H. Martens and G. Hoornaert, Tetrahedron, 1974, 30, 3641; Synth. Commun., 1972, 2, 147.

Paper 0/03445B
Received 30th July 1990
Accepted 30th October 1990

